Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH)
نویسندگان
چکیده
It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment.
منابع مشابه
Activation of proteinase-activated receptor 1 promotes human colon cancer cell proliferation through epidermal growth factor receptor transactivation.
Serine proteases are now considered as crucial contributors to the development of human colon cancer. We have shown recently that thrombin is a potent growth factor for colon cancer cells through activation of the aberrantly expressed protease-activated receptor 1 (PAR1). Here, we analyzed the signaling pathways downstream of PAR1 activation, which lead to colon cancer cell proliferation in HT-...
متن کاملPotentiation of NMDA receptor function by the serine protease thrombin.
Although serine proteases and their receptors are best known for their role in blood coagulation and fibrinolysis, the CNS expresses many components of an extracellular protease signaling system including the protease-activated receptor-1 (PAR1), for which thrombin is the most effective activator. In this report we show that activation of PAR1 potentiates hippocampal NMDA receptor responses in ...
متن کاملSRC kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage.
BACKGROUND AND PURPOSE The mechanisms by which intracerebral hemorrhages produce changes of blood flow and metabolism, cell death, and behavioral abnormalities are complex. In this study, we begin to test the hypothesis that intracerebral hemorrhage activates Src kinases that phosphorylate other molecules to produce cell injury and behavioral deficits after intracerebral hemorrhage (ICH). MET...
متن کاملThe tyrosine kinase and mitogen-activated protein kinase pathways mediate multiple effects of estrogen in hippocampus.
Estrogen replacement therapy in women is associated with improvement of cognitive deficits and reduced incidence of Alzheimer's disease. The present study indicates that estrogen is neuroprotective against N-methyl-d-aspartate (NMDA)- and kainate-mediated neurotoxicity, an effect mediated by tyrosine kinase/mitogen-activated protein kinase (MAPK) pathways. Estrogen also stimulates tyrosine phos...
متن کاملInterleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases.
Interleukin (IL)-1beta is a proinflammatory cytokine implicated in various pathophysiological conditions of the CNS involving NMDA receptor activation. Circumstantial evidence suggests that IL-1beta and NMDA receptors can functionally interact. Using primary cultures of rat hippocampal neurons, we investigated whether IL-1beta affects NMDA receptor function(s) by studying (1) NMDA receptor-indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016